Dimensionality in metal-oxide-semiconductor field-effect transistors: A comparison of one-dimensional and two-dimensional ballistic transistors

نویسندگان

  • Raseong Kim
  • Neophytos C. Neophytou
  • Abhijeet Paul
  • Gerhard Klimeck
  • Mark S. Lundstrom
  • Neophytos Neophytou
چکیده

Dimensionality in metal-oxide-semiconductor field-effect transistors: A comparison of one-dimensional and two-dimensional ballistic transistors" (2008). One-dimensional ͑1D͒ and two-dimensional ͑2D͒ metal-oxide-semiconductor field-effect transistors are compared using an approach based on the top-of-the-barrier ballistic transport model. The results for model devices show that 1D and 2D transistors behave quite similarly if the electrostatics is assumed to be perfect. Distinctive features of 1D transport are difficult to observe at room temperature. The effects of band structure on I-V and C-V characteristics of Si and InAs nanowire transistors are also examined using the sp 3 d 5 s * tight-binding model. It is found that band structure effects in 1D transistors are most distinctively reflected in the drain current versus gate bias or transconductance versus gate bias for low drain bias at low temperatures. Some effects may also be observed in nanowire C-V characteristics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Projections for Ballistic Carbon Nanotube Field-Effect Transistors

The performance limits of carbon nanotube field-effect transistors ~CNTFETs! are examined theoretically by extending a one-dimensional treatment used for silicon metal–oxide– semiconductor field-effect transistors ~MOSFETs!. Compared to ballistic MOSFETs, ballistic CNTFETs show similar I – V characteristics but the channel conductance is quantized. For low-voltage, digital applications, the CNT...

متن کامل

Efficient quantum three-dimensional modeling of fully depleted ballistic silicon-on-insulator metal-oxide-semiconductor field-effect-transistors

We present an efficient, fully quantum mechanical approach to calculating ballistic transport in fully-depleted silicon-on-insulator metal-oxide semiconductor field effect transistor devices in three dimensions and apply the technique to the calculation of threshold voltages for realistic devices with narrow channels. We illustrate the fact that each dopant configuration becomes exceedingly imp...

متن کامل

Ballistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2

Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...

متن کامل

High-frequency noise in nanoscale metal oxide semiconductor field effect transistors

The noise characteristics of today’s short-channel devices are shown to have a better resemblance to ballistic devices than to long-channel metal oxide semiconductor field effect transistors MOSFETs . Therefore the noise characteristics of these devices are best modeled using a ballistic-MOSFET-based noise model. Extensive hydrodynamic device simulations are presented in support of this hypothe...

متن کامل

The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors

Articles you may be interested in High-field transport in a graphene nanolayer Effects of dimensionality on the ballistic phonon transport and thermal conductance in nanoscale structures Experimental evidence of ballistic transport in cylindrical gate-all-around twin silicon nanowire metal-oxide-semiconductor field-effect transistors Appl. Using the Landauer approach for carrier transport, we a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014